The readers will discover the following key novelties:
1) development of a bio-medical lexicon: WME expansion and WME enrichment with additional features.;
2) ensemble of machine learning and computational creativity;
3) development of microtext analysis techniques to overcome the inconsistency in social communication.
It will be of interest to researchers in the fields of socially-intelligent human-machine interaction and biomedical text miningHe completed his Bachelor's degree in Computer Science and Engg., from IIIT-Bhubaneswar, India in 2013. He further recieved a M.Tech degree from University of Hyderabad, India in 2016, with majors in Computer Science. During his pursuits of Master's degree, he joined Dr. Cambria's research group SenticNet as an intern, where he worked on bio-medical sentiment analysis. This exposure and a keen-to-learn attitude motivated him to apply for Ph.D under Dr. Cambria.