Wave Packet Analysis: Issue 105

Conference board of the mathematical sciences: Regional conference series in mathematics Boek 105 · American Mathematical Soc.
E-boek
86
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

The concept of ''wave packet analysis'' originates in Carleson's famous proof of almost everywhere convergence of Fourier series of $L2$ functions. It was later used by Lacey and Thiele to prove bounds on the bilinear Hilbert transform. For quite some time, Carleson's wave packet analysis was thought to be an important idea, but that it had limited applications. But in recent years, it has become clear that this is an important tool for a number of other applications. This book isan introduction to these tools. It emphasizes the classical successes (Carleson's theorem and the Hilbert transform) in the main development. However, the book closes with a dedicated chapter on more recent results. Carleson's original theorem is sometimes cited as one of the most importantdevelopments of 20th century harmonic analysis. The set of ideas stemming from his proof is now seen as an essential element in modern harmonic analysis. Indeed, Thiele won the Salem prize jointly with Michael Lacey for work in this area. The book gives a nice survey of important material, such as an overview of the theory of singular integrals and wave packet analysis itself. There is a separate chapter on ''further developments'', which gives a broader view on the subject, though it does notexhaust all ongoing developments.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.