Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems

· Springer Science & Business Media
Электрондық кітап
244
бет
Рейтингілер мен пікірлер тексерілмеген. Толығырақ

Осы электрондық кітап туралы ақпарат

It would be hopeless to attempt to give a complete account of the history of the calculus of variations. The interest of Greek philosophers in isoperimetric problems underscores the importance of "optimal form" in ancient cultures, see Hildebrandt-Tromba [1] for a beautiful treatise of this subject. While variatio nal problems thus are part of our classical cultural heritage, the first modern treatment of a variational problem is attributed to Fermat (see Goldstine [1; p.l]). Postulating that light follows a path of least possible time, in 1662 Fer mat was able to derive the laws of refraction, thereby using methods which may already be termed analytic. With the development of the Calculus by Newton and Leibniz, the basis was laid for a more systematic development of the calculus of variations. The brothers Johann and Jakob Bernoulli and Johann's student Leonhard Euler, all from the city of Basel in Switzerland, were to become the "founding fathers" (Hildebrandt-Tromba [1; p.21]) of this new discipline. In 1743 Euler [1] sub mitted "A method for finding curves enjoying certain maximum or minimum properties", published 1744, the first textbook on the calculus of variations.

Осы электрондық кітапты бағалаңыз.

Пікіріңізбен бөлісіңіз.

Ақпаратты оқу

Смартфондар мен планшеттер
Android және iPad/iPhone үшін Google Play Books қолданбасын орнатыңыз. Ол аккаунтпен автоматты түрде синхрондалады және қайда болсаңыз да, онлайн не офлайн режимде оқуға мүмкіндік береді.
Ноутбуктар мен компьютерлер
Google Play дүкенінде сатып алған аудиокітаптарды компьютердің браузерінде тыңдауыңызға болады.
eReader және басқа құрылғылар
Kobo eReader сияқты E-ink технологиясымен жұмыс істейтін құрылғылардан оқу үшін файлды жүктеп, оны құрылғыға жіберу керек. Қолдау көрсетілетін eReader құрылғысына файл жіберу үшін Анықтама орталығының нұсқауларын орындаңыз.