Upconversion Nanoparticles for Biomedical Applications

· ·
· Woodhead Publishing
Carte electronică
470
Pagini
Eligibilă
Această carte va deveni disponibilă pe 1 septembrie 2025. Nu vei fi taxat(ă) înainte de lansare.

Despre această carte electronică

'Functionalized Upconversion Nanoparticles for Biomedical Applications' provides a comprehensive overview of the chemistry, properties, characterization and emerging applications of lanthanide-doped upconversion nanoparticles (UCNPs), focusing on upconversion mechanisms, fluorescent properties, and biomedical applications. The emerging applications of UCNPs include cancer diagnostics and therapy, biosensing and bioassays, bioimaging, drug and gene delivery, cellular optogenetics, and the detection of small biomolecules and ions. The biocompatibility, biodegradability, bio-distribution, toxicity and regulatory considerations of functionalized upconversion are fully considered. This book offers a unique reference resource for researchers, bringing together a global authorship to cover the fundamentals, state of the art, current challenges and future perspectives of functionalized upconversion nanoparticles.• Covers the fundamental science and properties of lanthanide-doped upconversion nanoparticles (UCNPs)• Explores emerging biomedical applications in areas including drug delivery, cancer diagnosis and therapy, biosensing and bioimaging• Provides a detailed survey of recent research, invaluable to researchers across multiple academic disciplines, and scientists developing new applications in academic and commercial R&D contexts

Despre autor

Dr. Kalim Deshmukh is a Senior Researcher at the New Technologies-Research Centre, University of West Bohemia, Pilsen, Czech Republic. He has over 15 years of research experience in the field of synthesis, characterization and structure-property relationships in a wide variety of polymeric materials, polymer blends and nanocomposites for various technological applications. His research interest is mainly focused on the synthesis, characterization and property investigations of polymer nanocomposites reinforced with different nanofillers including nanoparticles and carbon allotropes such as carbon black, carbon nanotubes, graphene and its derivatives for potential electronic applications.

Kevin D. Belfield is the Dean of the College of Science and Liberal Arts, and Distinguished Professor of Chemistry and Environmental Science at the New Jersey Institute of Technology, New Jersey, USA. He received his B.S. in Chemistry in 1982 from Rochester Institute of Technology and his Ph.D. in Chemistry from Syracuse University in 1988. After conducting research in polymer stabilization and degradation at Ciba-Geigy, he conducted research in the synthesis and characterization of functionalized polymers at SUNY College of Environmental Science and Forestry. A pioneer in two-photon absorbing materials and two-photon photochemistry, Belfield has systematically developed principles for the design of probes for in vivo multiphoton fluorescence imaging, photosensitizers for photodynamic cancer therapy, and reagents for two-photon induced photochemical activation. Belfield is also the Becton Dickinson Endowed Research Professor at NJIT, was elected Fellow of the American Association for the Advancement of Science in 2013, Fellow of the American Chemical Society in 2019, and Fellow of the Royal Society of Chemistry in 2022.

Chaudhery Mustansar Hussain is an Adjunct Professor and Director of laboratories in the Department of Chemistry & Environmental Sciences at the New Jersey Institute of Technology (NJIT), United States. His research is focused on the applications of nanotechnology and advanced materials, environmental management, analytical chemistry, and other various industries. Dr. Hussain is the author of numerous papers in peer-reviewed journals as well as a prolific author and editor of around 150 books, including scientific monographs and handbooks in his research areas.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.