Topological Vector Spaces

· Graduate Texts in Mathematics Boek 3 · Springer Science & Business Media
E-boek
349
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

The present book is intended to be a systematic text on topological vector spaces and presupposes familiarity with the elements of general topology and linear algebra. The author has found it unnecessary to rederive these results, since they are equally basic for many other areas of mathematics, and every beginning graduate student is likely to have made their acquaintance. Simi larly, the elementary facts on Hilbert and Banach spaces are widely known and are not discussed in detail in this book, which is :plainly addressed to those readers who have attained and wish to get beyond the introductory level. The book has its origin in courses given by the author at Washington State University, the University of Michigan, and the University of Ttibingen in the years 1958-1963. At that time there existed no reasonably ccmplete text on topological vector spaces in English, and there seemed to be a genuine need for a book on this subject. This situation changed in 1963 with the appearance of the book by Kelley, Namioka et al. [1] which, through its many elegant proofs, has had some influence on the final draft of this manuscript. Yet the two books appear to be sufficiently different in spirit and subject matter to justify the publication of this manuscript; in particular, the present book includes a discussion of topological tensor products, nuclear spaces, ordered topological vector spaces, and an appendix on positive operators.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.