Topological Invariants of Stratified Spaces

· Springer Science & Business Media
电子书
264
评分和评价未经验证  了解详情

关于此电子书

The homology of manifolds enjoys a remarkable symmetry: Poincaré duality. If the manifold is triangulated, then this duality can be established by associating to a s- plex its dual block in the barycentric subdivision. In a manifold, the dual block is a cell, so the chain complex based on the dual blocks computes the homology of the manifold. Poincaré duality then serves as a cornerstone of manifold classi cation theory. One reason is that it enables the de nition of a fundamental bordism inva- ant, the signature. Classifying manifolds via the surgery program relies on modifying a manifold by executing geometric surgeries. The trace of the surgery is a bordism between the original manifold and the result of surgery. Since the signature is a b- dism invariant, it does not change under surgery and is thus a basic obstruction to performing surgery. Inspired by Hirzebruch’s signature theorem, a method of Thom constructs characteristic homology classes using the bordism invariance of the s- nature. These classes are not in general homotopy invariants and consequently are ne enough to distinguish manifolds within the same homotopy type. Singular spaces do not enjoy Poincaré duality in ordinary homology. After all, the dual blocks are not cells anymore, but cones on spaces that may not be spheres. This book discusses when, and how, the invariants for manifolds described above can be established for singular spaces.

作者简介

EMPLOYMENT: Since 2004: Professor at the Ruprecht-Karls-Universität Heidelberg, Germany
2002 - 2004: Assistant Professor (tenure track) at the University of Cincinnati, USA
1999 - 2002: Van Vleck Assistant Professor at the University of Wisconsin - Madison, USA

EDUCATION: Ph.D. Mathematics, Courant Institute (New York University), May 1999.
Field: Topology.
Dissertation Title: Extending Intersection Homology Type Invariants to non-Witt Spaces.

RESEARCH AREA: Algebraic and Geometric Topology, Stratified Spaces.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。