The Random Projection Method

· DIMACS Series کتاب 65 · American Mathematical Soc.
ای بک
105
صفحات
درجہ بندیوں اور جائزوں کی تصدیق نہیں کی جاتی ہے  مزید جانیں

اس ای بک کے بارے میں

Random projection is a simple geometric technique for reducing the dimensionality of a set of points in Euclidean space while preserving pairwise distances approximately. The technique plays a key role in several breakthrough developments in the field of algorithms. In other cases, it provides elegant alternative proofs. The book begins with an elementary description of the technique and its basic properties. Then it develops the method in the context of applications, which are divided into three groups. The first group consists of combinatorial optimization problems such as maxcut, graph coloring, minimum multicut, graph bandwidth and VLSI layout. Presented in this context is the theory of Euclidean embeddings of graphs. The next group is machine learning problems, specifically, learning intersections of halfspaces and learning large margin hypotheses. The projection method is further refined for the latter application. The last set consists of problems inspired by information retrieval, namely, nearest neighbor search, geometric clustering and efficient low-rank approximation. Motivated by the first two applications, an extension of random projection to the hypercube is developed here. Throughout the book, random projection is used as a way to understand, simplify and connect progress on these important and seemingly unrelated problems. The book is suitable for graduate students and research mathematicians interested in computational geometry.

اس ای بک کی درجہ بندی کریں

ہمیں اپنی رائے سے نوازیں۔

پڑھنے کی معلومات

اسمارٹ فونز اور ٹیب لیٹس
Android اور iPad/iPhone.کیلئے Google Play کتابیں ایپ انسٹال کریں۔ یہ خودکار طور پر آپ کے اکاؤنٹ سے سینک ہو جاتی ہے اور آپ جہاں کہیں بھی ہوں آپ کو آن لائن یا آف لائن پڑھنے دیتی ہے۔
لیپ ٹاپس اور کمپیوٹرز
آپ اپنے کمپیوٹر کے ویب براؤزر کا استعمال کر کے Google Play پر خریدی گئی آڈیو بکس سن سکتے ہیں۔
ای ریڈرز اور دیگر آلات
Kobo ای ریڈرز جیسے ای-انک آلات پر پڑھنے کے لیے، آپ کو ایک فائل ڈاؤن لوڈ کرنے اور اسے اپنے آلے پر منتقل کرنے کی ضرورت ہوگی۔ فائلز تعاون یافتہ ای ریڈرز کو منتقل کرنے کے لیے تفصیلی ہیلپ سینٹر کی ہدایات کی پیروی کریں۔