The Differential Geometry of Finsler Spaces

· Grundlehren der mathematischen Wissenschaften Livre 101 · Springer Science & Business Media
E-book
284
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

The present monograph is motivated by two distinct aims. Firstly, an endeavour has been made to furnish a reasonably comprehensive account of the theory of Finsler spaces based on the methods of classical differential geometry. Secondly, it is hoped that this monograph may serve also as an introduction to a branch of differential geometry which is closely related to various topics in theoretical physics, notably analytical dynamics and geometrical optics. With this second object in mind, an attempt has been made to describe the basic aspects of the theory in some detail - even at the expense of conciseness - while in the more specialised sections of the later chapters, which might be of interest chiefly to the specialist, a more succinct style has been adopted. The fact that there exist several fundamentally different points of view with regard to Finsler geometry has rendered the task of writing a coherent account a rather difficult one. This remark is relevant not only to the development of the subject on the basis of the tensor calculus, but is applicable in an even wider sense. The extensive work of H. BUSEMANN has opened up new avenues of approach to Finsler geometry which are independent of the methods of classical tensor analysis. In the latter sense, therefore, a full description of this approach does not fall within the scope of this treatise, although its fundamental l significance cannot be doubted.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.