THEORY OF CAUSAL DIFFERENTIAL EQUATIONS

· Atlantis Studies in Mathematics for Engineering and Science Cartea 5 · Springer Science & Business Media
Carte electronică
208
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The problems of modern society are both complex and inter-disciplinary. Despite the - parent diversity of problems, however, often tools developed in one context are adaptable to an entirely different situation. For example, consider the well known Lyapunov’s second method. This interesting and fruitful technique has gained increasing signi?cance and has given decisive impetus for modern development of stability theory of discrete and dynamic system. It is now recognized that the concept of Lyapunov function and theory of diff- ential inequalities can be utilized to investigate qualitative and quantitative properties of a variety of nonlinear problems. Lyapunov function serves as a vehicle to transform a given complicated system into a simpler comparison system. Therefore, it is enough to study the properties of the simpler system to analyze the properties of the complicated system via an appropriate Lyapunov function and the comparison principle. It is in this perspective, the present monograph is dedicated to the investigation of the theory of causal differential equations or differential equations with causal operators, which are nonanticipative or abstract Volterra operators. As we shall see in the ?rst chapter, causal differential equations include a variety of dynamic systems and consequently, the theory developed for CDEs (Causal Differential Equations) in general, covers the theory of several dynamic systems in a single framework.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.