Spatial Predictive Modeling with R

┬╖ CRC Press
рдЗ-рдкреБрд╕реНрддрдХ
404
рдкреГрд╖реНрдард╣рд░реВ
рдпреЛрдЧреНрдп
рд░реЗрдЯрд┐рдЩ рд░ рд░рд┐рднреНрдпреВрд╣рд░реВрдХреЛ рдкреБрд╖реНрдЯрд┐ рдЧрд░рд┐рдПрдХреЛ рд╣реБрдБрджреИрди ┬ардердк рдЬрд╛рдиреНрдиреБрд╣реЛрд╕реН

рдпреЛ рдЗ-рдкреБрд╕реНрддрдХрдХрд╛ рдмрд╛рд░реЗрдорд╛

Spatial predictive modeling (SPM) is an emerging discipline in applied sciences, playing a key role in the generation of spatial predictions in various disciplines. SPM refers to preparing relevant data, developing optimal predictive models based on point data, and then generating spatial predictions. This book aims to systematically introduce the entire process of SPM as a discipline. The process contains data acquisition, spatial predictive methods and variable selection, parameter optimization, accuracy assessment, and the generation and visualization of spatial predictions, where spatial predictive methods are from geostatistics, modern statistics, and machine learning.

The key features of this book are:

тАвSystematically introducing major components of SPM process.
тАвNovel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods.
тАвNovel predictive accuracy-based variable selection techniques for spatial predictive methods.
тАвPredictive accuracy-based parameter/model optimization.
тАвReproducible examples for SPM of various data types in R.

This book provides guidelines, recommendations, and reproducible examples for developing optimal predictive models by considering various components and associated factors for quality-improved spatial predictions. It provides valuable tools for researchers, modelers, and university students not only in SPM field but also in other predictive modeling fields.

Dr Li has produced over 100 various publications in spatial predictive modelling, statistical computing, ecological and environmental modelling, and ecology, developed a number of hybrid methods for SPM, and published four R packages for variable selections as well as SPM.

рд▓реЗрдЦрдХрдХреЛ рдмрд╛рд░реЗрдорд╛

Dr Jin Li works at Data2action, Australia as a Founder. He has research experience in spatial predictive modelling, statistical computing, ecological and environmental modelling, and ecology. As a scientist, he worked in the Chinese Academy of Sciences, University of New England, CSIRO, and Geoscience Australia. He was an Associate Editor (Jul 2008-Dec 2015) and an editorial board member (Jan 2016-April 2020) of Acta Oecologica, and a Guest Academic Editor (Mar 2018) and an Academic Editor (May 2018-Apr 2020) of PLOS ONE. He has produced over 100 various publications, developed a number of hybrid methods for spatial predictive modeling, and published four R packages for variable selections and spatial predictive modelling. For further information see https://www.researchgate.net/profile/Jin-Li-74, https://scholar.google.com/citations?user=Jeot53EAAAAJ&hl=en and https://www.linkedin.com/in/jin-li-01421a68/.

рдпреЛ рдЗ-рдкреБрд╕реНрддрдХрдХреЛ рдореВрд▓реНрдпрд╛рдЩреНрдХрди рдЧрд░реНрдиреБрд╣реЛрд╕реН

рд╣рд╛рдореАрд▓рд╛рдИ рдЖрдлреНрдиреЛ рдзрд╛рд░рдгрд╛ рдмрддрд╛рдЙрдиреБрд╣реЛрд╕реНред

рдЬрд╛рдирдХрд╛рд░реА рдкрдвреНрджреИ

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рддрдерд╛ рдЯреНрдпрд╛рдмрд▓реЗрдЯрд╣рд░реВ
Android рд░ iPad/iPhone рдХрд╛ рд▓рд╛рдЧрд┐┬аGoogle Play рдХрд┐рддрд╛рдм рдПрдк рдХреЛ рдЗрдиреНрд╕реНрдЯрд▓ рдЧрд░реНрдиреБрд╣реЛрд╕реНред рдпреЛ рддрдкрд╛рдИрдВрдХреЛ рдЦрд╛рддрд╛рд╕реЕрдВрдЧ рд╕реНрд╡рддрдГ рд╕рд┐рдВрдХ рд╣реБрдиреНрдЫ рд░ рддрдкрд╛рдИрдВ рдЕрдирд▓рд╛рдЗрди рд╡рд╛ рдЕрдлрд▓рд╛рдЗрди рдЬрд╣рд╛рдБ рднрдП рдкрдирд┐┬ардЕрдзреНрдпрдпрди рдЧрд░реНрди рджрд┐рдиреНрдЫред
рд▓реНрдпрд╛рдкрдЯрдк рддрдерд╛ рдХрдореНрдкреНрдпреБрдЯрд░рд╣рд░реВ
рддрдкрд╛рдИрдВ Google Play рдорд╛ рдЦрд░рд┐рдж рдЧрд░рд┐рдПрдХреЛ рдЕрдбрд┐рдпреЛрдмреБрдХ рдЖрдлреНрдиреЛ рдХрдореНрдкреНрдпреБрдЯрд░рдХреЛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд░ рдкреНрд░рдпреЛрдЧ рдЧрд░реЗрд░ рд╕реБрдиреНрди рд╕рдХреНрдиреБрд╣реБрдиреНрдЫред
eReaders рд░ рдЕрдиреНрдп рдЙрдкрдХрд░рдгрд╣рд░реВ
Kobo eReaders рдЬрд╕реНрддрд╛ e-ink рдбрд┐рднрд╛рдЗрд╕рд╣рд░реВрдорд╛ рдлрд╛рдЗрд▓ рдкрдвреНрди рддрдкрд╛рдИрдВрд▓реЗ рдлрд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдЧрд░реЗрд░ рдЙрдХреНрдд рдлрд╛рдЗрд▓ рдЖрдлреНрдиреЛ рдбрд┐рднрд╛рдЗрд╕рдорд╛ рдЯреНрд░рд╛рдиреНрд╕реНрдлрд░ рдЧрд░реНрдиреБ рдкрд░реНрдиреЗ рд╣реБрдиреНрдЫред рддреА рдлрд╛рдЗрд▓рд╣рд░реВ рдкрдвреНрди рдорд┐рд▓реНрдиреЗ рдЗрдмреБрдХ рд░рд┐рдбрд░рд╣рд░реВрдорд╛ рддреА рдлрд╛рдЗрд▓рд╣рд░реВ рдЯреНрд░рд╛рдиреНрд╕реНрдлрд░ рдЧрд░реНрдиреЗрд╕рдореНрдмрдиреНрдзреА рд╡рд┐рд╕реНрддреГрдд рдирд┐рд░реНрджреЗрд╢рдирд╣рд░реВ рдкреНрд░рд╛рдкреНрдд рдЧрд░реНрди рдорджреНрджрдд рдХреЗрдиреНрджреНрд░ рдорд╛ рдЬрд╛рдиреБрд╣реЛрд╕реНред

Jin Li рджреНрд╡рд░рд╛ рдердк

рдЙрд╕реНрддреИ рдЗ-рдкреБрд╕реНрддрдХрд╣рд░реВ