Solving Ordinary Differential Equations I: Nonstiff Problems

· ·
· Springer Series in Computational Mathematics Livre 8 · Springer Science & Business Media
E-book
482
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

"So far as I remember, I have never seen an Author's Pre face which had any purpose but one - to furnish reasons for the publication of the Book. " (Mark Twain) "Gauss' dictum, "when a building is completed no one should be able to see any trace of the scaffolding," is often used by mathematicians as an excuse for neglecting the motivation behind their own work and the history of their field. For tunately, the opposite sentiment is gaining strength, and numerous asides in this Essay show to which side go my sympathies. " (B. B. Mandelbrot, 1982) 'This gives us a good occasion to work out most of the book until the next year. " (the Authors in a letter, dated c. kt. 29, 1980, to Springer Verlag) There are two volumes, one on non-stiff equations, now finished, the second on stiff equations, in preparation. The first volume has three chapters, one on classical mathematical theory, one on Runge Kutta and extrapolation methods, and one on multistep methods. There is an Appendix containing some Fortran codes which we have written for our numerical examples. Each chapter is divided into sections. Numbers of formulas, theorems, tables and figures are consecutive in each section and indi cate, in addition, the section number, but not the chapter number. Cross references to other chapters are rare and are stated explicitly. The end of a proof is denoted by "QED" (quod erat demonstrandum).

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.