Solving Ordinary Differential Equations I: Nonstiff Problems

· ·
· Springer Series in Computational Mathematics Book 8 · Springer Science & Business Media
Ebook
482
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

"So far as I remember, I have never seen an Author's Pre face which had any purpose but one - to furnish reasons for the publication of the Book. " (Mark Twain) "Gauss' dictum, "when a building is completed no one should be able to see any trace of the scaffolding," is often used by mathematicians as an excuse for neglecting the motivation behind their own work and the history of their field. For tunately, the opposite sentiment is gaining strength, and numerous asides in this Essay show to which side go my sympathies. " (B. B. Mandelbrot, 1982) 'This gives us a good occasion to work out most of the book until the next year. " (the Authors in a letter, dated c. kt. 29, 1980, to Springer Verlag) There are two volumes, one on non-stiff equations, now finished, the second on stiff equations, in preparation. The first volume has three chapters, one on classical mathematical theory, one on Runge Kutta and extrapolation methods, and one on multistep methods. There is an Appendix containing some Fortran codes which we have written for our numerical examples. Each chapter is divided into sections. Numbers of formulas, theorems, tables and figures are consecutive in each section and indi cate, in addition, the section number, but not the chapter number. Cross references to other chapters are rare and are stated explicitly. The end of a proof is denoted by "QED" (quod erat demonstrandum).

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.