Nearly Integrable Infinite-Dimensional Hamiltonian Systems

· Springer
Ebook
104
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The book is devoted to partial differential equations of Hamiltonian form, close to integrable equations. For such equations a KAM-like theorem is proved, stating that solutions of the unperturbed equation that are quasiperiodic in time mostly persist in the perturbed one. The theorem is applied to classical nonlinear PDE's with one-dimensional space variable such as the nonlinear string and nonlinear Schr|dinger equation andshow that the equations have "regular" (=time-quasiperiodic and time-periodic) solutions in rich supply. These results cannot be obtained by other techniques. The book will thus be of interest to mathematicians and physicists working with nonlinear PDE's. An extensivesummary of the results and of related topics is provided in the Introduction. All the nontraditional material used is discussed in the firstpart of the book and in five appendices.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.