Riemannian Holonomy Groups and Calibrated Geometry

· Oxford Graduate Texts in Mathematics Книга 12 · OUP Oxford
Электронная книга
320
Количество страниц
Можно добавить
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

This graduate level text covers an exciting and active area of research at the crossroads of several different fields in Mathematics and Physics. In Mathematics it involves Differential Geometry, Complex Algebraic Geometry, Symplectic Geometry, and in Physics String Theory and Mirror Symmetry. Drawing extensively on the author's previous work, the text explains the advanced mathematics involved simply and clearly to both mathematicians and physicists. Starting with the basic geometry of connections, curvature, complex and Kähler structures suitable for beginning graduate students, the text covers seminal results such as Yau's proof of the Calabi Conjecture, and takes the reader all the way to the frontiers of current research in calibrated geometry, giving many open problems.

Об авторе

Dominic Joyce came up to Oxford University in 1986 to read Mathematics. He held an EPSRC Advanced Research Fellowship from 2001-2006, was recently promoted to professor, and now leads a research group in Homological Mirror Symmetry. His main research areas so far have been compact manifolds with the exceptional holonomy groups G_2 and Spin(7), and special Lagrangian submanifolds, a kind of calibrated submanifold. He is married, with two daughters.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.