Riemann Surfaces and Generalized Theta Functions

· Springer Science & Business Media
Էլ. գիրք
168
Էջեր
Գնահատականները և կարծիքները չեն ստուգվում  Իմանալ ավելին

Այս էլ․ գրքի մասին

The investigation of the relationships between compact Riemann surfaces (al gebraic curves) and their associated complex tori (Jacobi varieties) has long been basic to the study both of Riemann surfaces and of complex tori. A Riemann surface is naturally imbedded as an analytic submanifold in its associated torus; and various spaces of linear equivalence elasses of divisors on the surface (or equivalently spaces of analytic equivalence elasses of complex line bundies over the surface), elassified according to the dimensions of the associated linear series (or the dimensions of the spaces of analytic cross-sections), are naturally realized as analytic subvarieties of the associated torus. One of the most fruitful of the elassical approaches to this investigation has been by way of theta functions. The space of linear equivalence elasses of positive divisors of order g -1 on a compact connected Riemann surface M of genus g is realized by an irreducible (g -1)-dimensional analytic subvariety, an irreducible hypersurface, of the associated g-dimensional complex torus J(M); this hyper 1 surface W- r;;;, J(M) is the image of the natural mapping Mg- -+J(M), and is g 1 1 birationally equivalent to the (g -1)-fold symmetric product Mg- jSg-l of the Riemann surface M.

Գնահատեք էլ․ գիրքը

Կարծիք հայտնեք։

Տեղեկություններ

Սմարթֆոններ և պլանշետներ
Տեղադրեք Google Play Գրքեր հավելվածը Android-ի և iPad/iPhone-ի համար։ Այն ավտոմատ համաժամացվում է ձեր հաշվի հետ և թույլ է տալիս կարդալ առցանց և անցանց ռեժիմներում:
Նոթբուքներ և համակարգիչներ
Դուք կարող եք լսել Google Play-ից գնված աուդիոգրքերը համակարգչի դիտարկիչով:
Գրքեր կարդալու սարքեր
Գրքերը E-ink տեխնոլոգիան աջակցող սարքերով (օր․՝ Kobo էլեկտրոնային ընթերցիչով) կարդալու համար ներբեռնեք ֆայլը և այն փոխանցեք ձեր սարք։ Մանրամասն ցուցումները կարող եք գտնել Օգնության կենտրոնում։