Riemann Surfaces and Algebraic Curves: A First Course in Hurwitz Theory

·
· London Mathematical Society Student Texts Book 87 · Cambridge University Press
Ebook
197
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.

About the author

Renzo Cavalieri is Associate Professor of Mathematics at Colorado State University. He received his PhD in 2005 at the University of Utah under the direction of Aaron Bertram. Hurwitz theory has been an important feature and tool in Cavalieri's research, which revolves around the interaction among moduli spaces of curves and maps from curves, and their different compactifications. He has taught courses on Hurwitz theory at the graduate and undergraduate level at Colorado State University and around the world at the National Institute for Pure and Applied Mathematics (IMPA) in Brazil, Beijing University, and the University of Costa Rica.

Eric Miles is Assistant Professor of Mathematics at Colorado Mesa University. He received his PhD in 2014 under the supervision of Renzo Cavalieri. Miles' doctoral work was on Bridgeland Stability Conditions, an area of algebraic geometry that makes significant use of homological algebra.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.