Python: Real-World Data Science

4.2
리뷰 6개
eBook
1255
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Unleash the power of Python and its robust data science capabilitiesAbout This BookUnleash the power of Python 3 objectsLearn to use powerful Python libraries for effective data processing and analysisHarness the power of Python to analyze data and create insightful predictive modelsUnlock deeper insights into machine learning with this vital guide to cutting-edge predictive analyticsWho This Book Is For

Entry-level analysts who want to enter in the data science world will find this course very useful to get themselves acquainted with Python's data science capabilities for doing real-world data analysis.

What You Will LearnInstall and setup PythonImplement objects in Python by creating classes and defining methodsGet acquainted with NumPy to use it with arrays and array-oriented computing in data analysisCreate effective visualizations for presenting your data using MatplotlibProcess and analyze data using the time series capabilities of pandasInteract with different kind of database systems, such as file, disk format, Mongo, and RedisApply data mining concepts to real-world problemsCompute on big data, including real-time data from the InternetExplore how to use different machine learning models to ask different questions of your dataIn Detail

The Python: Real-World Data Science course will take you on a journey to become an efficient data science practitioner by thoroughly understanding the key concepts of Python. This learning path is divided into four modules and each module are a mini course in their own right, and as you complete each one, you'll have gained key skills and be ready for the material in the next module.

The course begins with getting your Python fundamentals nailed down. After getting familiar with Python core concepts, it's time that you dive into the field of data science. In the second module, you'll learn how to perform data analysis using Python in a practical and example-driven way. The third module will teach you how to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis to more complex data types including text, images, and graphs. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. In the final module, we'll discuss the necessary details regarding machine learning concepts, offering intuitive yet informative explanations on how machine learning algorithms work, how to use them, and most importantly, how to avoid the common pitfalls.

Style and approach

This course includes all the resources that will help you jump into the data science field with Python and learn how to make sense of data. The aim is to create a smooth learning path that will teach you how to get started with powerful Python libraries and perform various data science techniques in depth.

평점 및 리뷰

4.2
리뷰 6개

저자 정보

Fabrizio Romano was born in Italy in 1975. He holds a master's degree in computer science engineering from the University of Padova. He is also a certified Scrum master. Before Python, he has worked with several other languages, such as C/C++, Java, PHP, and C#. In 2011, he moved to London and started working as a Python developer for Glasses Direct, one of Europe's leading online prescription glasses retailers. He then worked as a senior Python developer for TBG (now Sprinklr), one of the world's leading companies in social media advertising. At TBG, he and his team collaborated with Facebook and Twitter. They were the first in the world to get access to the Twitter advertising API. He wrote the code that published the first geo-narrowcasted promoted tweet in the world using the API. He currently works as a senior platform developer at Student.com, a company that is revolutionizing the way international students find their perfect home all around the world. He has delivered talks on Teaching Python and TDD with Python at the last two editions of EuroPython and at Skillsmatter in London.

Phuong Vo.T.H has a MSc degree in computer science, which is related to machine learning. After graduation, she continued to work in some companies as a data scientist. She has experience in analyzing users' behavior and building recommendation systems based on users' web histories. She loves to read machine learning and mathematics algorithm books, as well as data analysis articles.

Martin Czygan studied German literature and computer science in Leipzig, Germany. He has been working as a software engineer for more than 10 years. For the past eight years, he has been diving into Python, and is still enjoying it. In recent years, he has been helping clients to build data processing pipelines and search and analytics systems. His consultancy can be found at http://www.xvfz.net.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.