Probability Theory III: Stochastic Calculus

·
· Encyclopaedia of Mathematical Sciences Boek 45 · Springer Science & Business Media
E-boek
256
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Preface In the axioms of probability theory proposed by Kolmogorov the basic "probabilistic" object is the concept of a probability model or probability space. This is a triple (n, F, P), where n is the space of elementary events or outcomes, F is a a-algebra of subsets of n announced by the events and P is a probability measure or a probability on the measure space (n, F). This generally accepted system of axioms of probability theory proved to be so successful that, apart from its simplicity, it enabled one to embrace the classical branches of probability theory and, at the same time, it paved the way for the development of new chapters in it, in particular, the theory of random (or stochastic) processes. In the theory of random processes, various classes of processes have been studied in depth. Theories of processes with independent increments, Markov processes, stationary processes, among others, have been constructed. In the formation and development of the theory of random processes, a significant event was the realization that the construction of a "general theory of ran dom processes" requires the introduction of a flow of a-algebras (a filtration) F = (Ftk::o supplementing the triple (n, F, P), where F is interpreted as t the collection of events from F observable up to time t.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.