Probability Measures on Metric Spaces

¡ Academic Press
āĻ‡-āĻŦā§āĻ•
288
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻ‰āĻĒāĻ¯ā§āĻ•ā§āĻ¤
āĻ°ā§‡āĻŸāĻŋāĻ‚ āĻ“ āĻ°āĻŋāĻ­āĻŋāĻ‰ āĻ¯āĻžāĻšāĻžāĻ‡ āĻ•āĻ°āĻž āĻšā§ŸāĻ¨āĻŋ  āĻ†āĻ°āĻ“ āĻœāĻžāĻ¨ā§āĻ¨

āĻāĻ‡ āĻ‡-āĻŦā§āĻ•ā§‡āĻ° āĻŦāĻŋāĻˇā§Ÿā§‡

Probability Measures on Metric Spaces presents the general theory of probability measures in abstract metric spaces. This book deals with complete separable metric groups, locally impact abelian groups, Hilbert spaces, and the spaces of continuous functions. Organized into seven chapters, this book begins with an overview of isomorphism theorem, which states that two Borel subsets of complete separable metric spaces are isomorphic if and only if they have the same cardinality. This text then deals with properties such as tightness, regularity, and perfectness of measures defined on metric spaces. Other chapters consider the arithmetic of probability distributions in topological groups. This book discusses as well the proofs of the classical extension theorems and existence of conditional and regular conditional probabilities in standard Borel spaces. The final chapter deals with the compactness criteria for sets of probability measures and their applications to testing statistical hypotheses. This book is a valuable resource for statisticians.

āĻ‡-āĻŦā§āĻ•ā§‡ āĻ°ā§‡āĻŸāĻŋāĻ‚ āĻĻāĻŋāĻ¨

āĻ†āĻĒāĻ¨āĻžāĻ° āĻŽāĻ¤āĻžāĻŽāĻ¤ āĻœāĻžāĻ¨āĻžāĻ¨āĨ¤

āĻĒāĻ āĻ¨ āĻ¤āĻĨā§āĻ¯

āĻ¸ā§āĻŽāĻžāĻ°ā§āĻŸāĻĢā§‹āĻ¨ āĻāĻŦāĻ‚ āĻŸā§āĻ¯āĻžāĻŦāĻ˛ā§‡āĻŸ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāĻ° āĻœāĻ¨ā§āĻ¯ Google Play āĻŦāĻ‡ āĻ…ā§āĻ¯āĻžāĻĒ āĻ‡āĻ¨āĻ¸ā§āĻŸāĻ˛ āĻ•āĻ°ā§āĻ¨āĨ¤ āĻāĻŸāĻŋ āĻ†āĻĒāĻ¨āĻžāĻ° āĻ…ā§āĻ¯āĻžāĻ•āĻžāĻ‰āĻ¨ā§āĻŸā§‡āĻ° āĻ¸āĻžāĻĨā§‡ āĻ…āĻŸā§‹āĻŽā§‡āĻŸāĻŋāĻ• āĻ¸āĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āĻ†āĻĒāĻ¨āĻŋ āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨ āĻ¯āĻžāĻ‡ āĻĨāĻžāĻ•ā§āĻ¨ āĻ¨āĻž āĻ•ā§‡āĻ¨ āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻĒā§œāĻ¤ā§‡ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āĻ¯āĻžāĻĒāĻŸāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°
Google Play āĻĨā§‡āĻ•ā§‡ āĻ•ā§‡āĻ¨āĻž āĻ…āĻĄāĻŋāĻ“āĻŦā§āĻ• āĻ†āĻĒāĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°ā§‡āĻ° āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžāĻ°ā§‡ āĻļā§āĻ¨āĻ¤ā§‡ āĻĒāĻžāĻ°ā§‡āĻ¨āĨ¤
eReader āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āĻ¯āĻžāĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸
Kobo eReaders-āĻāĻ° āĻŽāĻ¤ā§‹ e-ink āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻĒāĻĄāĻŧāĻ¤ā§‡, āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻāĻ•āĻŸāĻŋ āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛ā§‹āĻĄ āĻ“ āĻ†āĻĒāĻ¨āĻžāĻ° āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°āĻ¤ā§‡ āĻšāĻŦā§‡āĨ¤ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ°āĻ•āĻžāĻ°ā§€āĻ° āĻ‰āĻĻā§āĻĻā§‡āĻļā§āĻ¯ā§‡ āĻ¤ā§ˆāĻ°āĻŋ āĻ¸āĻšāĻžā§ŸāĻ¤āĻž āĻ•ā§‡āĻ¨ā§āĻĻā§āĻ°āĻ¤ā§‡ āĻĻā§‡āĻ“ā§ŸāĻž āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžāĻŦāĻ˛ā§€ āĻ…āĻ¨ā§āĻ¸āĻ°āĻŖ āĻ•āĻ°ā§‡ āĻ¯ā§‡āĻ¸āĻŦ eReader-āĻ āĻĢāĻžāĻ‡āĻ˛ āĻĒāĻĄāĻŧāĻž āĻ¯āĻžāĻŦā§‡ āĻ¸ā§‡āĻ–āĻžāĻ¨ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°ā§āĻ¨āĨ¤