Positional Games

· · ·
· Oberwolfach Seminars Cartea 44 · Springer
Carte electronică
146
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This text is based on a lecture course given by the authors in the framework of Oberwolfach Seminars at the Mathematisches Forschungsinstitut Oberwolfach in May, 2013. It is intended to serve as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two player perfect information games. These ranges from such popular games as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs. The subject of positional games is strongly related to several other branches of combinatorics such as Ramsey theory, extremal graph and set theory, and the probabilistic method. These notes cover a variety of topics in positional games, including both classical results and recent important developments. They are presented in an accessible way and are accompanied by exercises of varying difficulty, helping the reader to better understand the theory. The text will benefit both researchers and graduate students in combinatorics and adjacent fields.

Despre autor

Dan Hefetz obtained his PhD in computer science at Tel Aviv University and is lecturer in pure mathematics at the University of Birmingham. Michael Krivelevich obtained his PhD in mathematics at Tel Aviv University, Israel, where he is now a full professor. Miloš Stojaković obtained his PhD in computer science at ETH Zürich, Switzerland, and is now an associate professor at the University of Novi Sad, Serbia. Tibor Szabó, who received his PhD from the Ohio State University, is a professor in the mathematics department at Freie Universität Berlin, Germany. One of their common research interests is positional games. In May 2013 they jointly organized a workshop on this topic at the Mathematisches Forschungsinstitut Oberwolfach (MFO).

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.