Galois Representations and (Phi, Gamma)-Modules

· Cambridge Studies in Advanced Mathematics Book 164 · Cambridge University Press
Ebook
157
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin–Tate extensions of local number fields, and provides an introduction to Lubin–Tate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location.

About the author

Peter Schneider is a professor in the Mathematical Institute at the University of Münster. His research interests lie within the Langlands program, which relates Galois representations to representations of p-adic reductive groups, as well as in number theory and in representation theory. He is the author of Nonarchimedean Functional Analysis (2001), p-Adic Lie Groups (2011) and Modular Representation Theory of Finite Groups (2012), and he is a member of the National German Academy of Science Leopoldina and of the Academia Europaea.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.