Optimization Methods in Partial Differential Equations: Proceedings from the 1996 Joint Summer Research Conference, June 16-20, 1996, Mount Holyoke College

·
· Contemporary mathematics - American Mathematical Society Bog 209 · American Mathematical Soc.
E-bog
349
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

This book presents a collection of papers written by specialists in the field and devoted to the analysis of various aspects of optimization problems with a common focus on partial differential equation (PDE) models. These papers were presented at the AMS-SIAM 1996 Joint Summer Research Conference held at Mount Holyoke College, South Adley, MA, in June 1996. The problems considered range from basic theoretical issues in the calculus of variations-such as infinite dimensional Hamilton Jacobi equations, saddle point principles, and issues of unique continuation-to ones focusing on application and computation, where theoretical tools are tuned to more specifically defined problems. The last category of these problems include inverse/recovery problems in physical systems, shape optimization and shape design of elastic structures, control and optimization of fluids, boundary controllability of PDE's including applications to flexible structures,etc. The papers selected for this volume are at the forefront of research and point to modern trends and open problems. This book will be a valuable tool not only to specialists in the field interestd in technical details, but also to scientists entering the field who are searching for promising directions for research.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.

Fortsæt serien

Mere af Steven Cox

Lignende e-bøger