Nonlinear Programming: Sequential Unconstrained Minimization Techniques

Β·
· Classics in Applied Mathematics Книга 4 · SIAM
Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°
226
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†ΠΈ
ΠžΡ‚Π³ΠΎΠ²Π°Ρ€Ρ Π½Π° условията
ΠžΡ†Π΅Π½ΠΊΠΈΡ‚Π΅ ΠΈ ΠΎΡ‚Π·ΠΈΠ²ΠΈΡ‚Π΅ Π½Π΅ са ΠΏΠΎΡ‚Π²ΡŠΡ€Π΄Π΅Π½ΠΈ  НаучСтС ΠΏΠΎΠ²Π΅Ρ‡Π΅

Всичко Π·Π° Ρ‚Π°Π·ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°

Recent interest in interior point methods generated by Karmarkar's Projective Scaling Algorithm has created a new demand for this book because the methods that have followed from Karmarkar's bear a close resemblance to those described. There is no other source for the theoretical background of the logarithmic barrier function and other classical penalty functions. Analyzes in detail the "central" or "dual" trajectory used by modern path following and primal/dual methods for convex and general linear programming. As researchers begin to extend these methods to convex and general nonlinear programming problems, this book will become indispensable to them.

ΠžΡ†Π΅Π½Π΅Ρ‚Π΅ Ρ‚Π°Π·ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°

ΠšΠ°ΠΆΠ΅Ρ‚Π΅ Π½ΠΈ ΠΊΠ°ΠΊΠ²ΠΎ мислитС.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ Π·Π° Ρ‡Π΅Ρ‚Π΅Π½Π΅Ρ‚ΠΎ

Π‘ΠΌΠ°Ρ€Ρ‚Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°ΠΉΡ‚Π΅ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅Ρ‚ΠΎ Google Play Книги Π·Π° Android ΠΈ iPad/iPhone. Π’ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎ сС синхронизира с ΠΏΡ€ΠΎΡ„ΠΈΠ»Π° Π²ΠΈ ΠΈ Π²ΠΈ позволява Π΄Π° Ρ‡Π΅Ρ‚Π΅Ρ‚Π΅ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΈΠ»ΠΈ ΠΎΡ„Π»Π°ΠΉΠ½, ΠΊΡŠΠ΄Π΅Ρ‚ΠΎ ΠΈ Π΄Π° стС.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡŽΡ‚Ρ€ΠΈ
ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π·Π°ΠΊΡƒΠΏΠ΅Π½ΠΈΡ‚Π΅ ΠΎΡ‚ Google Play Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ посрСдством ΡƒΠ΅Π± Π±Ρ€Π°ΡƒΠ·ΡŠΡ€Π° Π½Π° ΠΊΠΎΠΌΠΏΡŽΡ‚ΡŠΡ€Π° си.
Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈ Ρ‡Π΅Ρ‚Ρ†ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ устройства
Π—Π° Π΄Π° Ρ‡Π΅Ρ‚Π΅Ρ‚Π΅ Π½Π° устройства с Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ мастило, ΠΊΠ°Ρ‚ΠΎ Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ‚Π΅ Ρ‡Π΅Ρ‚Ρ†ΠΈ ΠΎΡ‚ Kobo, трябва Π΄Π° ΠΈΠ·Ρ‚Π΅Π³Π»ΠΈΡ‚Π΅ Ρ„Π°ΠΉΠ» ΠΈ Π΄Π° Π³ΠΎ ΠΏΡ€Π΅Ρ…Π²ΡŠΡ€Π»ΠΈΡ‚Π΅ Π½Π° устройството си. Π˜Π·ΠΏΡŠΠ»Π½Π΅Ρ‚Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΈΡ‚Π΅ инструкции Π² ΠŸΠΎΠΌΠΎΡ‰Π½ΠΈΡ Ρ†Π΅Π½Ρ‚ΡŠΡ€, Π·Π° Π΄Π° ΠΏΡ€Π΅Ρ…Π²ΡŠΡ€Π»ΠΈΡ‚Π΅ Ρ„Π°ΠΉΠ»ΠΎΠ²Π΅Ρ‚Π΅ Π² ΠΏΠΎΠ΄Π΄ΡŠΡ€ΠΆΠ°Π½ΠΈΡ‚Π΅ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈ Ρ‡Π΅Ρ‚Ρ†ΠΈ.