Nonlinear Dimensionality Reduction: Advanced Techniques for Enhancing Data Representation in Robotic Systems

· Robotics Science 42. knjiga · One Billion Knowledgeable
E-knjiga
320
Strani
Primerno
Ocene in mnenja niso preverjeni. Več o tem

O tej e-knjigi

1: Nonlinear dimensionality reduction: Explore foundational concepts and the importance of reducing highdimensional data for easier analysis.

2: Linear map: Introduces the basics of linear mapping and its role in reducing data dimensionality in machine learning.


3: Support vector machine: Learn how support vector machines apply dimensionality reduction in classification tasks and pattern recognition.


4: Principal component analysis: Delve into PCA's technique for transforming data into a set of linearly uncorrelated variables.


5: Isometry: Examine how isometric techniques preserve distances between points while reducing data dimensions.


6: Dimensionality reduction: Understand the broader scope of dimensionality reduction and its applications in various fields.


7: Semidefinite embedding: Study semidefinite programming and its connection to dimensionality reduction methods.


8: Kernel method: Discover the power of kernel methods in handling nonlinear relationships in data reduction.


9: Kernel principal component analysis: Explore KPCA’s capability to perform dimensionality reduction in a highdimensional feature space.


10: Numerical continuation: Learn how numerical continuation techniques assist in understanding highdimensional systems.


11: Spectral clustering: Understand how spectral clustering leverages dimensionality reduction to group similar data points.


12: Isomap: A look at Isomap, a technique that combines multidimensional scaling with geodesic distances for dimensionality reduction.


13: Johnson–Lindenstrauss lemma: Delve into the mathematics of the JohnsonLindenstrauss lemma, which ensures dimensionality reduction maintains geometric properties.


14: LinearnonlinearPoisson cascade model: Study how this model integrates linear and nonlinear methods in dimensionality reduction.


15: Manifold alignment: Learn about manifold alignment and its importance in aligning data from different domains in dimensionality reduction.


16: Diffusion map: Understand how diffusion maps use the diffusion process for dimensionality reduction in complex datasets.


17: Tdistributed stochastic neighbor embedding: Explore tSNE's ability to reduce dimensionality while preserving local structures in data.


18: Kernel embedding of distributions: Study how kernel embedding allows for dimensionality reduction on distributions, not just datasets.


19: Random projection: A practical approach to dimensionality reduction that relies on random projections for fast computation.


20: Manifold regularization: Learn about manifold regularization techniques and their impact on learning from highdimensional data.


21: Empirical dynamic modeling: Discover how empirical dynamic modeling aids in dimensionality reduction through time series data analysis.

Ocenite to e-knjigo

Povejte nam svoje mnenje.

Informacije o branju

Pametni telefoni in tablični računalniki
Namestite aplikacijo Knjige Google Play za Android in iPad/iPhone. Samodejno se sinhronizira z računom in kjer koli omogoča branje s povezavo ali brez nje.
Prenosni in namizni računalniki
Poslušate lahko zvočne knjige, ki ste jih kupili v Googlu Play v brskalniku računalnika.
Bralniki e-knjig in druge naprave
Če želite brati v napravah, ki imajo zaslone z e-črnilom, kot so e-bralniki Kobo, morate prenesti datoteko in jo kopirati v napravo. Podrobna navodila za prenos datotek v podprte bralnike e-knjig najdete v centru za pomoč.

Nadaljujte zbirko

Več od avtorja Fouad Sabry

Podobne e-knjige