Nonlinear Dimensionality Reduction: Advanced Techniques for Enhancing Data Representation in Robotic Systems

· Robotics Science Boek 42 · One Billion Knowledgeable
E-boek
320
Bladsye
Geskik
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

1: Nonlinear dimensionality reduction: Explore foundational concepts and the importance of reducing highdimensional data for easier analysis.

2: Linear map: Introduces the basics of linear mapping and its role in reducing data dimensionality in machine learning.


3: Support vector machine: Learn how support vector machines apply dimensionality reduction in classification tasks and pattern recognition.


4: Principal component analysis: Delve into PCA's technique for transforming data into a set of linearly uncorrelated variables.


5: Isometry: Examine how isometric techniques preserve distances between points while reducing data dimensions.


6: Dimensionality reduction: Understand the broader scope of dimensionality reduction and its applications in various fields.


7: Semidefinite embedding: Study semidefinite programming and its connection to dimensionality reduction methods.


8: Kernel method: Discover the power of kernel methods in handling nonlinear relationships in data reduction.


9: Kernel principal component analysis: Explore KPCA’s capability to perform dimensionality reduction in a highdimensional feature space.


10: Numerical continuation: Learn how numerical continuation techniques assist in understanding highdimensional systems.


11: Spectral clustering: Understand how spectral clustering leverages dimensionality reduction to group similar data points.


12: Isomap: A look at Isomap, a technique that combines multidimensional scaling with geodesic distances for dimensionality reduction.


13: Johnson–Lindenstrauss lemma: Delve into the mathematics of the JohnsonLindenstrauss lemma, which ensures dimensionality reduction maintains geometric properties.


14: LinearnonlinearPoisson cascade model: Study how this model integrates linear and nonlinear methods in dimensionality reduction.


15: Manifold alignment: Learn about manifold alignment and its importance in aligning data from different domains in dimensionality reduction.


16: Diffusion map: Understand how diffusion maps use the diffusion process for dimensionality reduction in complex datasets.


17: Tdistributed stochastic neighbor embedding: Explore tSNE's ability to reduce dimensionality while preserving local structures in data.


18: Kernel embedding of distributions: Study how kernel embedding allows for dimensionality reduction on distributions, not just datasets.


19: Random projection: A practical approach to dimensionality reduction that relies on random projections for fast computation.


20: Manifold regularization: Learn about manifold regularization techniques and their impact on learning from highdimensional data.


21: Empirical dynamic modeling: Discover how empirical dynamic modeling aids in dimensionality reduction through time series data analysis.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.

Gaan voort met die reeks

Nog deur Fouad Sabry

Soortgelyke e-boeke