No Nine Neighborly Tetrahedra Exist

· American Mathematical Society: Memoirs of the American Mathematical Society 447-kitob · American Mathematical Soc.
E-kitob
106
Sahifalar soni
Reytinglar va sharhlar tasdiqlanmagan  Batafsil

Bu e-kitob haqida

This book is devoted to a proof of the following problem of F Bagemihl (1956): What is the maximum number of tetrahedra in three-space such that every two of them meet in a two-dimensional set? Such families are called neighborly, Bagemihl presented an example of eight neighborly tetrahedra and showed that a neighborly family of tetrahedra contains at most seventeen members. This upper bound was reduced to nine in 1965. The question of whether or not there can be nine neighborly tetrahedra has been repeatedly mentioned in the literature since 1956. This book also treats the problem of the number of combinatorially different examples of eight neighborly tetrahedra. The author concludes by reproducing a proof that there can be at most fourteen tetrahedra in three-space such that every two tetrahedra are separated by a plane containing a facet of each of them. The book allows readers to follow the solution of this long-standing open problem by using various tools, including a few extensive computer searches.

Bu e-kitobni baholang

Fikringizni bildiring.

Qayerda o‘qiladi

Smartfonlar va planshetlar
Android va iPad/iPhone uchun mo‘ljallangan Google Play Kitoblar ilovasini o‘rnating. U hisobingiz bilan avtomatik tazrda sinxronlanadi va hatto oflayn rejimda ham kitob o‘qish imkonini beradi.
Noutbuklar va kompyuterlar
Google Play orqali sotib olingan audiokitoblarni brauzer yordamida tinglash mumkin.
Kitob o‘qish uchun mo‘ljallangan qurilmalar
Kitoblarni Kobo e-riderlar kabi e-siyoh qurilmalarida oʻqish uchun faylni yuklab olish va qurilmaga koʻchirish kerak. Fayllarni e-riderlarga koʻchirish haqida batafsil axborotni Yordam markazidan olishingiz mumkin.