Multiscale Modelling of Concrete

Β· Β· Β·
Β· Elsevier
Π•-ΠΊΠ½ΠΈΠ³Π°
250
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†ΠΈ
Π‘ΠΎΠΎΠ΄Π²Π΅Ρ‚Π½Π°
ΠšΠ½ΠΈΠ³Π°Ρ‚Π° ќС станС достапна Π½Π° 1 Ρ˜ΡƒΠ»ΠΈ 2025β€―Π³.. НСма Π΄Π° Π²ΠΈ сС Π½Π°ΠΏΠ»Π°Ρ‚ΠΈ сѐ Π΄ΠΎΠ΄Π΅ΠΊΠ° Π½Π΅ сС објави.

Π—Π° Π΅-ΠΊΠ½ΠΈΠ³Π°Π²Π°

Multiscale Modelling of Concrete covers all things concrete, including comprehensive discussions on this multi-phase and multi-scale material that is difficult to model and understand due to its heterogeneity. Thus, knowing the properties and modeling concrete in different scales is essential to predict properties and fracture. Most of the research has been focused on meso scale, or the methods available to model and predict micro-scale properties are not linked to experimental methods, so properties for microscale cannot be derived and it is onerous to validate such methods.Considering the above constraints, the book covers different modelling techniques of scales of concrete - macro, meso, micro/nano and molecular level, characterizing mechanical properties and parameters required for modelling using macro and micro level experiments and linking these levels using analytical and numerical methods to upscale results from micro to the macro level. - Covers the multiscale nature of concrete and different characteristics of concrete at macro, meso, micro, nano, and atomic scales - Includes finite element modeling of concrete at different length scales and advanced constitutive models of concrete and its constituents from nano to macroscales - Surveys state-of-the-art experimental techniques to obtain mechanical properties of concrete at various spatial scales - Includes numerical and analytical homogenization methods to upscale and predict the macroscopic behavior of concrete and advanced molecular dynamics simulations of concrete constituents at the atomic and nanoscale

Π—Π° Π°Π²Ρ‚ΠΎΡ€ΠΎΡ‚

Dr Baduge is a research fellow and manager of the Australian Research Centre for Advanced Manufacturing of Prefabricated Buildings (ARC CAMP.H), Department of Infrastructure Engineering, The University of Melbourne. He has expertise in high-performance concrete and multiscale modelling of concrete. He developed theories and guidelines for ultra-high-performance concrete and multi-scale modelling of concrete that has been published in the leading journal in the field, including Nature's Scientific Report, Engineering Structures, Construction and Building Materials, and Engineering Fracture Mechanics. He has published 11 journal papers related to multiscale modelling and understanding the fracture of concrete from nano to structural scale.Professor Mendis is a professor at the University of Melbourne, Australia with over 35 years of research experience. Prof. Mendis is a world leader in the field of construction and building materials, and concrete technology. He is the Director of ARC Centre for Advanced Manufacturing of Prefabricated Modular Housing and deputy director of the ARC Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions (TREMS). He has authored and co-authored more than 500 publications.Dr Thilakarathna is a research fellow at the Department of Infrastructure Engineering, The University of Melbourne, Australia. He has expertise in multiscale modelling of concrete, numerical modelling of concrete structures and microstructural characterisation. He has published several journal papers related to multiscale modelling and his PhD thesis was mainly focused on multiscale modelling of high-strength concrete. He has developed new methods and theories to characterise material on the nano/micro scale to determine microstructural phases and their properties and link these properties to the macro scale.Dr Vimonsatit has a broad range of experience in research and engineering practices in the construction industry. Her research interests are multiscale modelling, AI for material and structural design, buildability, construction materials, structural engineering, and sustainability. She has published many research articles on the field of multiscale modelling and has extensive knowledge of numerical modelling methods and homogenization methods.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π·Π° Ρ‡ΠΈΡ‚Π°ΡšΠ΅

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ ја Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°Ρ‚Π° Google Play Books Π·Π° Android ΠΈ iPad/iPhone. Автоматски сС синхронизира со смСтката ΠΈ Π²ΠΈ ΠΎΠ²ΠΎΠ·ΠΌΠΎΠΆΡƒΠ²Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈΠ»ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ ΠΊΠ°Π΄Π΅ ΠΈ Π΄Π° стС.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΈ
МоТС Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ ΠΊΡƒΠΏΠ΅Π½ΠΈ ΠΎΠ΄ Google Play со ΠΊΠΎΡ€ΠΈΡΡ‚Π΅ΡšΠ΅ Π½Π° Π²Π΅Π±-прСлистувачот Π½Π° ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΎΡ‚.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Π΄ΠΈ
Π—Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΈ со Π΅-мастило, ΠΊΠ°ΠΊΠΎ ΡˆΡ‚ΠΎ сС Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈΡ‚Π΅ Kobo, ќС Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅Π·Π΅ΠΌΠ΅Ρ‚Π΅ Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠ° ΠΈ Π΄Π° ја ΠΏΡ€Π΅Ρ„Ρ€Π»ΠΈΡ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΎΡ‚. Π‘Π»Π΅Π΄Π΅Ρ‚Π΅ Π³ΠΈ Π΄Π΅Ρ‚Π°Π»Π½ΠΈΡ‚Π΅ упатства Π²ΠΎ Π¦Π΅Π½Ρ‚Π°Ρ€ΠΎΡ‚ Π·Π° помош Π·Π° ΠΏΡ€Π΅Ρ„Ρ€Π»Π°ΡšΠ΅ Π½Π° Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠΈΡ‚Π΅ Π½Π° ΠΏΠΎΠ΄Π΄Ρ€ΠΆΠ°Π½ΠΈ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ.

ПовСќС од Shanaka Baduge

Π‘Π»ΠΈΡ‡Π½ΠΈ Π΅-ΠΊΠ½ΠΈΠ³ΠΈ