Monomial Algebras: Edition 2

· Chapman & Hall/CRC Monographs and Research Notes in Mathematics Boek 8 · CRC Press
E-boek
704
Bladsye
Geskik
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Monomial Algebras, Second Edition presents algebraic, combinatorial, and computational methods for studying monomial algebras and their ideals, including Stanley–Reisner rings, monomial subrings, Ehrhart rings, and blowup algebras. It emphasizes square-free monomials and the corresponding graphs, clutters, or hypergraphs.

New to the Second Edition

  • Four new chapters that focus on the algebraic properties of blowup algebras in combinatorial optimization problems of clutters and hypergraphs
  • Two new chapters that explore the algebraic and combinatorial properties of the edge ideal of clutters and hypergraphs
  • Full revisions of existing chapters to provide an up-to-date account of the subject

Bringing together several areas of pure and applied mathematics, this book shows how monomial algebras are related to polyhedral geometry, combinatorial optimization, and combinatorics of hypergraphs. It directly links the algebraic properties of monomial algebras to combinatorial structures (such as simplicial complexes, posets, digraphs, graphs, and clutters) and linear optimization problems.

Meer oor die skrywer

Dr. Rafael H. Villarreal is a professor in the Department of Mathematics at the Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav-IPN). His research focuses on commutative algebra, algebraic geometry, combinatorics, and computational algebra.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.