Mathematische Modellierung bei Platon zwischen Thales und Euklid

· Science, Technology, and Medicine in Ancient Cultures Libro 9 · Walter de Gruyter GmbH & Co KG
Ebook
504
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Wissenschaftliche Mathematik ist eine der wichtigsten Kulturleistungen des antiken Griechenland. Doch wann und wo genau hatte sie ihren Ursprung? Die Einschätzung der Antike, zwischen Thales und Euklid habe Platon eine maßgebliche Rolle gespielt, gilt als Fiktion. Diese Studie wirft einen neuen, modelltheoretischen Blick auf die Zeugnisse und erweist im Gegenteil, dass in der Tat Platon als Schöpfer von axiomatisch-deduktiver Mathematik gelten muss.
Grundlage der Analyse ist eine Neubewertung des Diagramms als zentralen Charakteristikums griechischer Mathematik aus modelltheoretischer Perspektive. Eine Untersuchung der Quadratverdopplung im Menon und zur Würfelverdopplung (Delisches Problem) zeigt, dass eine theoretische Mathematik erstmals für Platon bezeugt ist. Dass weiter auch nur Platon ein Motiv hatte, sie zu erfinden, ergibt sich aus der Explikation von Platons Theorie der mathematischen Modellierung anhand des Liniengleichnisses in Verbindung mit dem Nachweis, dass der Timaios als deren praktische Umsetzung fungiert.
Die Studie bietet wissenschaftshistorisch neue Einsichten zur Entstehung von Mathematik, philosophiehistorisch zu Platons Ontologie und Epistemologie und modelltheoretisch zu Theorie und Praxis von Modellierung.

Informazioni sull'autore

Claas Lattmann, Christian-Albrechts-Universität zu Kiel.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.