Mathematical Logic: Edition 3

· ·
· Graduate Texts in Mathematics Livre 291 · Springer Nature
E-book
304
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathe matical proofs? Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godel's completeness theorem, which shows that the con sequence relation coincides with formal provability: By means of a calcu lus consisting of simple formal inference rules, one can obtain all conse quences of a given axiom system (and in particular, imitate all mathemat ical proofs). A short digression into model theory will help us to analyze the expres sive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome--even in the framework of first-order logic-by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.

À propos de l'auteur

Heinz-Dieter Ebbinghaus is Professor Emeritus at the Mathematical Institute of the University of Freiburg. His work spans fields in logic, such as model theory and set theory, and includes historical aspects.

Jörg Flum is Professor Emeritus at the Mathematical Institute of the University of Freiburg. His research interests include mathematical logic, finite model theory, and parameterized complexity theory.

Wolfgang Thomas is Professor Emeritus at the Computer Science Department of RWTH Aachen University. His research interests focus on logic in computer science, in particular logical aspects of automata theory.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.