Mathematical Bridges

· ·
· Birkhäuser
3,0
O recenzie
Carte electronică
309
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics.

Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics.

Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bridges a useful resource in calculus, linear and abstract algebra, analysis and differential equations. Students desiring to hone and develop their mathematical skills or with an interest in mathematics competitions must have this book in their personal libraries.

Evaluări și recenzii

3,0
O recenzie

Despre autor

Titu Andreescu is an internationally acclaimed problem solving expert who has published more than 30 books in this area.
Cristinel Mortici is a Romanian mathematics professor who efficiently uses a problem base approach in his teaching.
Marian Tetiva is a Romanian high school teacher who strongly believes in the importance of meaningful problem solving in teaching and learning mathematics.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.