Martingales in Banach Spaces

· Cambridge Studies in Advanced Mathematics Livre 155 · Cambridge University Press
E-book
591
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.

À propos de l'auteur

Gilles Pisier is Emeritus Professor at the University of Paris VI, where he worked from 1981 to 2010. He is also a Distinguished Professor and holder of the Owen Chair in Mathematics at Texas A&M University. His international prizes include the Salem Prize in harmonic analysis (1979), the Ostrowski Prize (1997), and the Stefan Banach Medal (2001). He is a member of the Paris Académie des Sciences, a Foreign member of the Polish and Indian Academies of Science, and a Fellow of both the IMS and the AMS. He is also the author of several books, notably The Volume of Convex Bodies and Banach Space Geometry (Cambridge, 1989) and Introduction to Operator Space Theory (Cambridge, 2003).

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.