Martingales in Banach Spaces

· Cambridge Studies in Advanced Mathematics Kirja 155 · Cambridge University Press
E-kirja
591
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.

Tietoja kirjoittajasta

Gilles Pisier is Emeritus Professor at the University of Paris VI, where he worked from 1981 to 2010. He is also a Distinguished Professor and holder of the Owen Chair in Mathematics at Texas A&M University. His international prizes include the Salem Prize in harmonic analysis (1979), the Ostrowski Prize (1997), and the Stefan Banach Medal (2001). He is a member of the Paris Académie des Sciences, a Foreign member of the Polish and Indian Academies of Science, and a Fellow of both the IMS and the AMS. He is also the author of several books, notably The Volume of Convex Bodies and Banach Space Geometry (Cambridge, 1989) and Introduction to Operator Space Theory (Cambridge, 2003).

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.