Martingales in Banach Spaces

· Cambridge Studies in Advanced Mathematics Libro 155 · Cambridge University Press
eBook
591
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.

Acerca del autor

Gilles Pisier is Emeritus Professor at the University of Paris VI, where he worked from 1981 to 2010. He is also a Distinguished Professor and holder of the Owen Chair in Mathematics at Texas A&M University. His international prizes include the Salem Prize in harmonic analysis (1979), the Ostrowski Prize (1997), and the Stefan Banach Medal (2001). He is a member of the Paris Académie des Sciences, a Foreign member of the Polish and Indian Academies of Science, and a Fellow of both the IMS and the AMS. He is also the author of several books, notably The Volume of Convex Bodies and Banach Space Geometry (Cambridge, 1989) and Introduction to Operator Space Theory (Cambridge, 2003).

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.