Markov Processes: Volume I

· Grundlehren der mathematischen Wissenschaften Livre 121 · Springer Science & Business Media
E-book
366
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

The modem theory of Markov processes has its origins in the studies of A. A. MARKOV (1906-1907) on sequences of experiments "connected in a chain" and in the attempts to describe mathematically the physical phenomenon known as Brownian motion (L. BACHELlER 1900, A. EIN STEIN 1905). The first correct mathematical construction of a Markov process with continuous trajectories was given by N. WIENER in 1923. (This process is often called the Wiener process.) The general theory of Markov processes was developed in the 1930's and 1940's by A. N. KOL MOGOROV, W. FELLER, W. DOEBLlN, P. LEVY, J. L. DOOB, and others. During the past ten years the theory of Markov processes has entered a new period of intensive development. The methods of the theory of semigroups of linear operators made possible further progress in the classification of Markov processes by their infinitesimal characteristics. The broad classes of Markov processes with continuous trajectories be came the main object of study. The connections between Markov pro cesses and classical analysis were further developed. It has become possible not only to apply the results and methods of analysis to the problems of probability theory, but also to investigate analytic problems using probabilistic methods. Remarkable new connections between Markov processes and potential theory were revealed. The foundations of the theory were reviewed critically: the new concept of strong Markov process acquired for the whole theory of Markov processes great importance.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.