MM Optimization Algorithms

· Other Titles in Applied Mathematics Libro 145 · SIAM
5.0
1 opinión
Libro electrónico
232
Páginas
Apto
Las calificaciones y opiniones no están verificadas. Más información

Acerca de este libro electrónico

MM Optimization Algorithms offers an overview of the MM principle, a device for deriving optimization algorithms satisfying the ascent or descent property. These algorithms can separate the variables of a problem, avoid large matrix inversions, linearize a problem, restore symmetry, deal with equality and inequality constraints gracefully, and turn a nondifferentiable problem into a smooth problem.

The author presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics; derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining; and summarizes a large amount of literature that has not reached book form before.

Calificaciones y opiniones

5.0
1 opinión

Acerca del autor

Kenneth Lange is the Rosenfeld Professor of Computational Genetics, and a faculty member in the Departments of Biomathematics, Human Genetics and Statistics, at the University of California, Los Angeles. He has held appointments at the University of New Hampshire, Massachusetts Institute of Technology, Harvard University, the University of Michigan, the University of Helsinki and Stanford University. He is a Fellow of the American Statistical Association, the Institute of Mathematical Statistics, and the American Institute for Medical and Biomedical Engineering. He won the Snedecor Award from the Joint Statistical Societies in 1993 and gave a platform presentation at the 2015 International Congress of Mathematicians. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, optimization theory, and applied stochastic processes. He has published four previous books: Mathematical and Statistical Methods for Genetic Analysis, Numerical Analysis for Statisticians, Applied Probability, and Optimization, all in second editions.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.