Locally Finite, Planar, Edge-Transitive Graphs

·
· American Mathematical Society: Memoirs of the American Mathematical Society Buku 601 · American Mathematical Soc.
eBook
75
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

The nine finite, planar, 3-connected, edge-transitive graphs have been known and studied for many centuries. The infinite, locally finite, planar, 3-connected, edge-transitive graphs can be classified according to the number of their ends (the supremum of the number of infinite components when a finite subgraph is deleted). Prior to this study the 1-ended graphs in this class were identified by Grunbaum and Shephard as 1-skeletons of tessellations of the hyperbolic plane; Watkins characterized the 2-ended members. Any remaining graphs in this class must have uncountably many ends. In this work, infinite-ended members of this class are shown to exist. A more detailed classification scheme in terms of the types of Petrie walks in the graphs in this class and the local structure of their automorphism groups is presented. Explicit constructions are devised for all of the graphs in most of the classes under this new classification. Also included are partial results toward the complete description of the graphs in the few remaining classes.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.