Lectures on Closed Geodesics

· Grundlehren der mathematischen Wissenschaften Книга 230 · Springer Science & Business Media
ЭлСктронная ΠΊΠ½ΠΈΠ³Π°
230
ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ страниц
ΠžΡ†Π΅Π½ΠΊΠΈ ΠΈ ΠΎΡ‚Π·Ρ‹Π²Ρ‹ Π½Π΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Ρ‹. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅β€¦

Об элСктронной ΠΊΠ½ΠΈΠ³Π΅

The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable.

ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΡƒΡŽ ΠΊΠ½ΠΈΠ³Ρƒ

ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚Π΅ΡΡŒ с Π½Π°ΠΌΠΈ своим ΠΌΠ½Π΅Π½ΠΈΠ΅ΠΌ.

Π“Π΄Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΊΠ½ΠΈΠ³ΠΈ

Π‘ΠΌΠ°Ρ€Ρ‚Ρ„ΠΎΠ½Ρ‹ ΠΈ ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Ρ‹
УстановитС ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Google Play Книги для Android ΠΈΠ»ΠΈ iPad/iPhone. Оно синхронизируСтся с вашим Π°ΠΊΠΊΠ°ΡƒΠ½Ρ‚ΠΎΠΌ автоматичСски, ΠΈ Π²Ρ‹ смоТСтС Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π»ΡŽΠ±ΠΈΠΌΡ‹Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΈ ΠΎΡ„Π»Π°ΠΉΠ½ Π³Π΄Π΅ ΡƒΠ³ΠΎΠ΄Π½ΠΎ.
Ноутбуки ΠΈ Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Ρ‹
Π‘Π»ΡƒΡˆΠ°ΠΉΡ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ ΠΈΠ· Google Play Π² Π²Π΅Π±-Π±Ρ€Π°ΡƒΠ·Π΅Ρ€Π΅ Π½Π° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π΅.
Устройства для чтСния ΠΊΠ½ΠΈΠ³
Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΡŒ ΠΊΠ½ΠΈΠ³Ρƒ Π½Π° Ρ‚Π°ΠΊΠΎΠΌ устройствС для чтСния, ΠΊΠ°ΠΊ Kobo, скачайтС Ρ„Π°ΠΉΠ» ΠΈ Π΄ΠΎΠ±Π°Π²ΡŒΡ‚Π΅ Π΅Π³ΠΎ Π½Π° устройство. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ инструкции ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π² Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅.