Affine Representations of Grothendieck Groups and Applications to Rickart $C^\ast $-Algebras and $\aleph _0$-Continuous Regular Rings

· American Mathematical Society: Memoirs of the American Mathematical Society Book 234 · American Mathematical Soc.
Ebook
163
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This paper is concerned with the structure of three interrelated classes of objects: partially ordered abelian groups with countable interpolation, [Hebrew]Aleph0-continuous regular rings, and finite Rickart C*-algebras. The connection from these rings and algebras to these groups is the Grothendieck group K0, which, for all [Hebrew]Aleph0-continuous regular rings and most finite Rickart C*-algebras, is a partially ordered abelian group with countable interpolation. Such partially ordered groups are shown to possess quite specific representations in spaces of affine continuous functions on Choquet simplices. The theme of this paper is to develop the structure theory of these groups and these representations, and to translate the results, via K0, into properties of [Hebrew]Aleph0-continuous regular rings and finite Rickart C*-algebras.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.