Introduction to Topological Manifolds

· Graduate Texts in Mathematics Βιβλίο 202 · Springer Science & Business Media
ebook
392
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of di?erential geometry, algebraic topology, and related ?elds. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition. Here at the University of Washington, for example, this text is used for the ?rst third of a year-long course on the geometry and topology of manifolds; the remaining two-thirds focuses on smooth manifolds. Therearemanysuperbtextsongeneralandalgebraictopologyavailable. Why add another one to the catalog? The answer lies in my particular visionofgraduateeducation—itismy(admittedlybiased)beliefthatevery serious student of mathematics needs to know manifolds intimately, in the same way that most students come to know the integers, the real numbers, Euclidean spaces, groups, rings, and ?elds. Manifolds play a role in nearly every major branch of mathematics (as I illustrate in Chapter 1), and specialists in many ?elds ?nd themselves using concepts and terminology fromtopologyandmanifoldtheoryonadailybasis. Manifoldsarethuspart of the basic vocabulary of mathematics, and need to be part of the basic graduate education. The ?rst steps must be topological, and are embodied in this book; in most cases, they should be complemented by material on smooth manifolds, vector ?elds, di?erential forms, and the like. (After all, few of the really interesting applications of manifold theory are possible without using tools from calculus.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.