Introduction to Stochastic Integration

·
· Progress in Probability Sách 4 · Springer Science & Business Media
Sách điện tử
192
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

The contents of this monograph approximate the lectures I gave In a graduate course at Stanford University in the first half of 1981. But the material has been thoroughly reorganized and rewritten. The purpose is to present a modern version of the theory of stochastic in tegration, comprising but going beyond the classical theory, yet stopping short of the latest discontinuous (and to some distracting) ramifications. Roundly speaking, integration with respect to a local martingale with continuous paths is the primary object of study here. We have decided to include some results requiring only right continuity of paths, in order to illustrate the general methodology. But it is possible for the reader to skip these extensions without feeling lost in a wilderness of generalities. Basic probability theory inclusive of martingales is reviewed in Chapter 1. A suitably prepared reader should begin with Chapter 2 and consult Chapter 1 only when needed. Occasionally theorems are stated without proof but the treatmcnt is aimed at self-containment modulo the in evitable prerequisites. With considerable regret I have decided to omit a discussion of stochastic differential equations. Instead, some other ap plications of the stochastic calculus are given; in particular Brownian local time is treated in dctail to fill an unapparent gap in the literature. x I PREFACE The applications to storage theory discussed in Section 8. 4 are based on lectures given by J. Michael Harrison in my class.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.