Interactive Fuzzy Optimization

·
· Lecture Notes in Economics and Mathematical Systems Cartea 368 · Springer Science & Business Media
Carte electronică
222
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The title of this book seems to indicate that the volume is dedicated to a very specialized and narrow area, i. e. , to the relationship between a very special type of optimization and mathematical programming. The contrary is however true. Optimization is certainly a very old and classical area which is of high concern to many disciplines. Engineering as well as management, politics as well as medicine, artificial intelligence as well as operations research, and many other fields are in one way or another concerned with optimization of designs, decisions, structures, procedures, or information processes. It is therefore not surprising that optimization has not grown in a homogeneous way in one discipline either. Traditionally, there was a distinct difference between optimization in engineering, optimization in management, and optimization as it was treated in mathematical sciences. However, for the last decades all these fields have to an increasing degree interacted and contributed to the area of optimization or decision making. In some respects, new disciplines such as artificial intelligence, descriptive decision theory, or modern operations research have facilitated, or even made possible the interaction between the different classical disciplines because they provided bridges and links between areas which had been developing and applied quite independently before. The development of optimiiation over the last decades can best be appreciated when looking at the traditional model of optimization. For a well-structured, Le.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.

În continuarea seriei

Mai multe de la Mario Fedrizzi

Cărți electronice similare