Idempotent Analysis and Its Applications

· Mathematics and Its Applications 401 ବହି · Springer Science & Business Media
ଇବୁକ୍
305
ପୃଷ୍ଠାଗୁଡ଼ିକ
ରେଟିଂ ଓ ସମୀକ୍ଷାଗୁଡ଼ିକୁ ଯାଞ୍ଚ କରାଯାଇନାହିଁ  ଅଧିକ ଜାଣନ୍ତୁ

ଏହି ଇବୁକ୍ ବିଷୟରେ

The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In §1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .

ଏହି ଇବୁକ୍‍କୁ ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ

ଆପଣ କଣ ଭାବୁଛନ୍ତି ତାହା ଆମକୁ ଜଣାନ୍ତୁ।

ପଢ଼ିବା ପାଇଁ ତଥ୍ୟ

ସ୍ମାର୍ଟଫୋନ ଓ ଟାବଲେଟ
Google Play Books ଆପ୍କୁ, AndroidiPad/iPhone ପାଇଁ ଇନଷ୍ଟଲ୍ କରନ୍ତୁ। ଏହା ସ୍ଵଚାଳିତ ଭାବେ ଆପଣଙ୍କ ଆକାଉଣ୍ଟରେ ସିଙ୍କ ହୋ‍ଇଯିବ ଏବଂ ଆପଣ ଯେଉଁଠି ଥାଆନ୍ତୁ ନା କାହିଁକି ଆନଲାଇନ୍ କିମ୍ବା ଅଫଲାଇନ୍‍ରେ ପଢ଼ିବା ପାଇଁ ଅନୁମତି ଦେବ।
ଲାପଟପ ଓ କମ୍ପ୍ୟୁଟର
ନିଜର କମ୍ପ୍ୟୁଟର୍‍ରେ ଥିବା ୱେବ୍ ବ୍ରାଉଜର୍‍କୁ ବ୍ୟବହାର କରି Google Playରୁ କିଣିଥିବା ଅଡିଓବୁକ୍‍କୁ ଆପଣ ଶୁଣିପାରିବେ।
ଇ-ରିଡର୍ ଓ ଅନ୍ୟ ଡିଭାଇସ୍‍ଗୁଡ଼ିକ
Kobo eReaders ପରି e-ink ଡିଭାଇସଗୁଡ଼ିକରେ ପଢ଼ିବା ପାଇଁ, ଆପଣଙ୍କୁ ଏକ ଫାଇଲ ଡାଉନଲୋଡ କରି ଏହାକୁ ଆପଣଙ୍କ ଡିଭାଇସକୁ ଟ୍ରାନ୍ସଫର କରିବାକୁ ହେବ। ସମର୍ଥିତ eReadersକୁ ଫାଇଲଗୁଡ଼ିକ ଟ୍ରାନ୍ସଫର କରିବା ପାଇଁ ସହାୟତା କେନ୍ଦ୍ରରେ ଥିବା ସବିଶେଷ ନିର୍ଦ୍ଦେଶାବଳୀକୁ ଅନୁସରଣ କରନ୍ତୁ।