Hereditary Noetherian Prime Rings and Idealizers

·
· Mathematical Surveys and Monographs 174. књига · American Mathematical Soc.
Е-књига
228
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

The direct sum behaviour of its projective modules is a fundamental property of any ring. Hereditary Noetherian prime rings are perhaps the only noncommutative Noetherian rings for which this direct sum behaviour (for both finitely and infinitely generated projective modules) is well-understood, yet highly nontrivial

. This book surveys material previously available only in the research literature. It provides a re-worked and simplified account, with improved clarity, fresh insights and many original results about finite length modules, injective modules and projective modules. It culminates in the authors' surprisingly complete structure theorem for projective modules which involves two independent additive invariants: genus and Steinitz class. Several applications demonstrate its utility.

The theory, extending the well-known module theory of commutative Dedekind domains and of hereditary orders, develops via a detailed study of simple modules. This relies upon the substantial account of idealiser subrings which forms the first part of the book and provides a useful general construction tool for interesting examples.

The book assumes some knowledge of noncommutative Noetherian rings, including Goldie's theorem. Beyond that, it is largely self-contained, thanks to the appendix which provides succinct accounts of Artinian serial rings and, for arbitrary rings, results about lifting direct sum decompositions from finite length images of projective modules. The appendix also describes some open problems.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.