Geometry V: Minimal Surfaces

· Encyclopaedia of Mathematical Sciences الكتاب 90 · Springer Science & Business Media
كتاب إلكتروني
272
صفحة
لم يتم التحقّق من التقييمات والمراجعات.  مزيد من المعلومات

معلومات عن هذا الكتاب الإلكتروني

Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function.

تقييم هذا الكتاب الإلكتروني

أخبرنا ما هو رأيك.

معلومات القراءة

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك الاستماع إلى الكتب المسموعة التي تم شراؤها على Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.
أجهزة القراءة الإلكترونية والأجهزة الأخرى
للقراءة على أجهزة الحبر الإلكتروني، مثل أجهزة القارئ الإلكتروني Kobo، عليك تنزيل ملف ونقله إلى جهازك. يُرجى اتّباع التعليمات المفصّلة في مركز المساعدة لتتمكّن من نقل الملفات إلى أجهزة القارئ الإلكتروني المتوافقة.