Geometry III: Theory of Surfaces

·
· Encyclopaedia of Mathematical Sciences 48. grāmata · Springer Science & Business Media
E-grāmata
258
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

The original version of this article was written more than fiveyears ago with S. Z. Shefel',a profound and original mathematician who died in 1984. Sincethen the geometry of surfaces has continued to be enriched with ideas and results. This has required changes and additions, but has not influenced the character of the article, the design ofwhich originated with Shefel'. Without knowing to what extent Shefel' would have approved the changes, I should nevertheless like to dedicate this article to his memory. (Yu. D. Burago) We are trying to state the qualitative questions of the theory of surfaces in Euclidean spaces in the form in which they appear to the authors at present. This description does not entirely correspond to the historical development of the subject. The theory of surfaces was developed in the first place mainly as the 3 theory of surfaces in three-dimensional Euclidean space E ; however, it makes sense to begin by considering surfaces F in Euclidean spaces of any dimension n~ 3. This approach enables us, in particular, to put in a new light some 3 unsolved problems of this developed (and in the case of surfaces in E fairly complete) theory, and in many cases to refer to the connections with the present stage ofdevelopment of the theory of multidimensional submanifolds. The leading question of the article is the problem of the connection between classes of metrics and classes of surfaces in En.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.