Geometric Aspects of Partial Differential Equations: Proceedings of a Minisymposium on Spectral Invariants, Heat Equation Approach, September 18-19, 1998, Roskilde, Denmark

· Contemporary mathematics - American Mathematical Society Boek 242 · American Mathematical Soc.
E-boek
269
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

This collection of papers by leading researchers gives a broad picture of current research directions in geometric aspects of partial differential equations. Based on lectures presented at a Minisymposium on Spectral Invariants - Heat Equation Approach, held in September 1998 at Roskilde University in Denmark, the book provides both a careful exposition of new perspectives in classical index theory and an introduction to currently active areas of the field. Presented here are new index theorems as well as new calculations of the eta-invariant, of the spectral flow, of the Maslov index, of Seiberg-Witten monopoles, heat kernels, determinants, non-commutative residues, and of the Ray-Singer torsion. New types of boundary value problems for operators of Dirac type and generalizations to manifolds with cuspidal ends, to non-compact and to infinite-dimensional manifolds are also discussed. Throughout the book, the use of advanced analysis methods for gaining geometric insight emerges as a central theme. Aimed at graduate students and researchers, this book would be suitable as a text for an advanced graduate topics course on geometric aspects of partial differential equations and spectral invariants.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.