Functional Analysis I: Linear Functional Analysis

· Encyclopaedia of Mathematical Sciences 19. knjiga · Springer Science & Business Media
E-knjiga
286
Broj stranica
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

Up to a certain time the attention of mathematicians was concentrated on the study of individual objects, for example, specific elementary functions or curves defined by special equations. With the creation of the method of Fourier series, which allowed mathematicians to work with 'arbitrary' functions, the individual approach was replaced by the 'class' approach, in which a particular function is considered only as an element of some 'function space'. More or less simultane ously the development of geometry and algebra led to the general concept of a linear space, while in analysis the basic forms of convergence for series of functions were identified: uniform, mean square, pointwise and so on. It turns out, moreover, that a specific type of convergence is associated with each linear function space, for example, uniform convergence in the case of the space of continuous functions on a closed interval. It was only comparatively recently that in this connection the general idea of a linear topological space (L TS)l was formed; here the algebraic structure is compatible with the topological structure in the sense that the basic operations (addition and multiplication by a scalar) are continuous.

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.