Frontiers In Approximation Theory

· Series On Concrete And Applicable Mathematics Kirja 16 · World Scientific
E-kirja
228
sivuja
Kelvollinen
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

This monograph presents the author's work of the last five years in approximation theory. The chapters are self-contained and can be read independently. Readers will find the topics covered are diverse and advanced courses can be taught out of this book.The first part of the book is dedicated to fractional monotone approximation theory introduced for the first time by the author, taking the related ordinary theory of usual differentiation at the fractional differentiation level with polynomials and splines as approximators. The second part deals with the approximation by discrete singular operators of the Favard style, for example, of the Picard and Gauss-Weierstrass types. Then, it continues in a very detailed and extensive chapter on approximation by interpolating operators induced by neural networks, a connection to computer science. This book ends with the approximation theory and functional analysis on time scales, a very modern topic, detailing all the pros and cons of this method.The results in this book are expected to find applications in many areas of pure and applied mathematics. So far, very little is written about fractional approximation theory which is at its infancy. As such, it is suitable for researchers, graduate students, and performing seminars as well as an invaluable resource for all science libraries.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.