Fourier Restriction, Decoupling, and Applications

· Cambridge Studies in Advanced Mathematics 184. књига · Cambridge University Press
Е-књига
349
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

The last fifteen years have seen a flurry of exciting developments in Fourier restriction theory, leading to significant new applications in diverse fields. This timely text brings the reader from the classical results to state-of-the-art advances in multilinear restriction theory, the Bourgain–Guth induction on scales and the polynomial method. Also discussed in the second part are decoupling for curved manifolds and a wide variety of applications in geometric analysis, PDEs (Strichartz estimates on tori, local smoothing for the wave equation) and number theory (exponential sum estimates and the proof of the Main Conjecture for Vinogradov's Mean Value Theorem). More than 100 exercises in the text help reinforce these important but often difficult ideas, making it suitable for graduate students as well as specialists. Written by an author at the forefront of the modern theory, this book will be of interest to everybody working in harmonic analysis.

О аутору

Ciprian Demeter is Professor of Mathematics at Indiana University, Bloomington. He is one of the world's leading experts in Fourier restriction theory and its applications to number theory, which he teaches regularly at the graduate level. He received the Sloan fellowship in 2009 and was an invited speaker at the 2018 International Congress of Mathematicians in Rio de Janeiro.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.